skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Wu, Dai-Rong"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Spatial perception in virtual reality (VR) has been a hot research topic for years. Most of the studies on this topic have focused on visual perception and distance perception. Fewer have examined auditory perception and room size perception, although these aspects are important for improving VR experiences. Recently, a number of studies have shown that perception can be calibrated to information that is relevant to the successful completion of everyday tasks in VR (such as distance estimation and spatial perception). Also, some recent studies have examined calibration of auditory perception as a way to compensate for the classic distance compression problem in VR. In this paper, we present a calibration method for both visual and auditory room size perception. We conducted experiments to investigate how people perceive the size of a virtual room and how the accuracy of their size perception can be calibrated by manipulating perceptible auditory and visual information in VR. The results show that people were more accurate in perceiving room size by means of vision than in audition, but that they could still use audition to perceive room size. The results also show that during calibration, auditory room size perception exhibits learning effects and its accuracy was greatly improved after calibration. 
    more » « less
  2. Distance compression, which refers to the underestimation of ego-centric distance to objects, is a common problem in immersive virtual environments. Besides visually compensating the compressed distance, several studies have shown that auditory information can be an alternative solution for this problem. In particular, reverberation time (RT) has been proven to be an effective method to compensate distance compression. To further explore the feasibility of applying audio information to improve distance perception, we investigate whether users’ egocentric distance perception can be calibrated, and whether the calibrated effect can be carried over and even sustain for a longer duration. We conducted a study to understand the perceptual learning and carryover effects by using RT as stimuli for users to perceive distance in IVEs. The results show that the carryover effect exists after calibration, which indicates people can learn to perceive distances by attuning reverberation time, and the accuracy even remains a constant level after 6 months. Our findings could potentially be utilized to improve the distance perception in VR systems as the calibration of auditory distance perception in VR could sustain for several months. This could eventually avoid the burden of frequent training regimens. 
    more » « less